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A geometrical interpretation is proposed of the stability conditions for steady solutions of dynamical systems with simple symmetry 
in the Lyapunov-eritic;d ease, i.e. when the matrix of the linearization has one zero eigenvalue and all other eigenvalues have 
negative real parts. The change in the nature of the stability of a singular point when the parameter is varied is a.gsc~iated 
with bifurcations, represented by cusp and butterfly singularities of the manifolds of steady states. Analytic and numerical 
constructions are given of the bifurcation sets of the two-parameter families of steady states of two-unit systems with rolling, 
and the relationship of the system parameters responsible for the unsafe-safe boundary of the stability domain is determined. 
Copyright © 1996 Elsevier Science Ltd. 

1. I N T R O D U C T I O N  

Using the phenornenological approach [1], two-unit systems with rolling [2] may be classified, under 
certain assumptions, as dynamical systems with very simple symmetry, defined by stipulating that their 
right-hand sides are odd functions of the state variable x 

Jc = f f x , o ) ,  f ( - x , o )  = - f ( x , o )  (1.1) 

x, f ER n, v~RI+ 

In such systems the point x = 0 is necessarily singular (a symmetric solution [3]). Consider an n- 
dimensional system whose linearization matrix has one eigenvalue equal to zero, while the remaining 
eigenvalues have negative real parts. According to the Lyapunov reduction principle [4, 5], the problem 
of whether the solutionx = 0 of this system is stable may be solved by transforming to a one-dimensional 
dynamical system for the critical variable. In this paper the solution of the stability problem is reduced 
to analysing two finite equations obtained by methods analogous to the elimination of the non-critical 
variables from the critical equation in Lyapunov's theory. 

The equations of perturbed motion of sufficiently smooth dynamical systems (1.1) in the neighbour- 
hood of the state x = 0 involve only odd powers of the variables 

j=l k=l/=l m=l 
(1.2) 

+o(ix13~ . : i ,  U, "' =const (i=1 ..... n) , aq = const, "k/m = akml = amkl 
~ ' ' l  

We will concentrate on the case n = 2. The special features of the reduction of the case n > 2 to the 
two-dimensional case will be illustrated below in the problem of two-unit systems with rolling. The 
characteristic equation of the system 

xi = f/(xl,x2), f , ( x l , x 2 )  - a;~xl + (1.3) 

+ai2x2+a~i~x ~ {i) 2 ,i) 2 ~,, ,  3 ± . .  ( i = 1 , 2 )  + 3 a  112Xl x 2 + 3a122XlX 2 + t,222~ 2 --r. 

is 
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~2 +p~,+q=O, 

= -(a,~ + a22 ), 

P = -[div(fl ,  f2 )Ix, =O.x2 =0 = 

q = [ D(ft, f2 ) / D(xt. x2 )](0.0) = al Ia22 - a'2a21 

(1.4) 

Let (0, 0) be a simple singular point for a non-critical value of the characteristic parameter ~, and 
let us assume that p > 0; all the coefficients in (1.3) are continuous functions of the parameter; at 
subcritical values of  the parameter the Poincar6 index of the origin is 1 and at supercritical values it 
is -1. This situation frequently occurs in problems of the dynamics of simple and multiple-unit systems 
with rolling [2, 6]. At a critical value of the parameter (q = 0, ~ = -p),  the problem of stability is solved 
by the sign of the Lyapunov coefficient [7] 

-3 3 t (2) _(1) ~ (1.5) g=(a2l+al2a2l) "A, A=all[alla22,-a2,u2,2)+ 

2 (I)  ]a122)+3atla12(altat12 _ +3a)~a)2(a2]aj22 -a~ (2) 2 (2) 

. . 0 ) ~  3 / (t) . ( 2 ) ~  
-~21t~l12]+a12~a21alll - a l l , , l l  I } 

When g < 0, the solution Xl = 0, x2 = 0 of system (1.3) is asymptotically stable, when g > 0, it is 
unstable, while when g = 0, one must include fifth-order terms. 

2. A G E O M E T R I C  I N T E R P R E T A T I O N  OF T H E  S T A B I L I T Y  
C O N D I T I O N S  F O R  g ~ 0 

Under the assumptions of the implicit function theorem, the equations 

f/(xl,x2) = 0 (i = 1,2) (2.1) 

define certain curves in the x1x 2 plane in the neighbourhood of (0, 0) 

F:<0), " . . . .  ) = ' = Fio - F~ (0) x2 F/(xl) = FioX, + ~. (2.2) 

whose slopes are, by (1.3) 

Yi = F//~, ~{I = - a l l  la12, ~{2 =-a21 la22 (2.3) 

In the critical case Y1 = T2, i.e. the curves (2.2) touch at the origin. I f F ~  ;~ F~'o', they have a threefold 
intersection of three-point contact at the origin [8]. Let ~ i  denote the value of y/in subcritical position 
and let us introduce a new quantitygl = (T1 - Y2)* (F~'o" - F~'o' ). Analysis shows that in the critical case 
(in Lyapunov's sense), when the characteristic equation has one zero root, a threefold singular point is 
generated at the origin of the xrx2 plane if the differences 

(YJ - T2 )* and FI~'- Fi'~' (2.4) 

have the same signs. Thus, the condition for a generation bifurcation is gl < 0 (or the condition for 
preserving the order in which the curves (2.2) follow one another in subcritical and critical positions). 

In the Lyapunov-critical case, three singular points merge at the origin of thexrr2 plane if the differences 
(2.4) have different signs. Thus, the condition for a merging bifurcation is gl > 0 (or the condition for 
a change in the order in which the curves (2.2) follow one another in subcritical and critical positions). 

t .  - 4  - 1  Using (2.1)-(2.3) and (1.3), we find that F~" - F10 = 6a 1 2 a 2 1 A .  Hence it follows from (1.4) and (1.5) 
that 

2 - 4  - 3  - I  -~  - I  - I  * 
gg, = - - 6 a  a . a .  a 2 , ~  ( ¥ ( r 2 q a .  a2j ) (2.5) 

Under  our assumptions L2 < 0, a* > 0, (T1T2)* > 0, so that the sign of the right-hand side of (2.5) is 
defined by that of the quantity alla~la21a~l. The latter is positive, since a small neighbourhood of the 
critical position exists in which a ~1 and a ~1 have the same signs as in the critical position (by continuity). 



Real bifurcations of two-unit systems with rolling 415 

Thus, g21 > 0. Consequently, the case of asymptotic stability (g < 0) of the point xl = 0,x2 = 0 is uniquely 
associated with a generation bifurcation of singular points (gl < 0), and the case of instability (g > 0) 
with a merging bif~trcation (gl < 0). Thus, a change in the stability of the symmetric solution is associated 
with the realization of a threefold singular point in the manifold of steady states--a cusp singularity. 
The bifurcation set of the cusp in a small neighbourhood of the threefold point is described by a semi- 
cubic parabola [8, 9]. The parameter values at which the cusp is replaced by its dual must be identical 

per - -  rp¢ with those at which the curves (2.2) have a five-point contact at the origin, i.e. F10 - F~0 (a change of 
stability of a threefold singular point by realization of a butterfly singularity). 

3. T W O - U N I T  SYSTEMS WITH ROLLING:  R E D U C T I O N  OF THE 
T H R E E - D I M E N S I O N A L  P R O B L E M  TO TWO DIMENSIONS 

Let us consider a mechanical system consisting of a biaxial driving unit and a uniaxial driven unit 
linked to the other unit by a hinge (Fig. 1). Let ~ and u be the projections of the velocity of the mass 
centre C of the driving unit on its longitudinal and transverse axes, respectively, let co = O be the angular 
velocity of yaw of the driving unit, and let q~ be the accumulation angle of the driven unit. Using 
the quasi-velocities ~ and u, the real velocity co and the variable q0 instead of the holonomic coordinates 
x, y, 0 and q~, one can split the initial system of differential equations for the plane-parallel motion 
of the two-unit system, which is of order eight, into two successively integrable subsystems, one of 
order five 

*i(o',u',tO',~",O',o,u,~,ql)=O (i=1 ..... 4) 

and the other of order three 

(3.1) 

i f = t o ,  x =ocosO-us inO,  y = o s i n O + u c o s O  (3.2) 

For the form of the functions q~i see [2]. 

Y 

M 

F i g .  1.  

Z 



416 V.G. Verbitskii and L. G. Lobas 

Let us consider motion at a constant velocity 1). It follows from (3.2) that steady solutions u = const, 
to = const, ~p = const of system (3.1) are represented in the reference plane (the xy plane) by circular 
trajectories of  finite or infinite radius. It has been shown [2] that, at small values of 0, the problem of 
finding the singular points of system (3.1) may be reduced to the equations 

-mvto+Yl+Y2+Y =0,  aY~-bY.,-cV=O 

-ml(o[o cos (p - (u - co)) sin (p] + Y~ = 0 

(3.3) 

where 

Y" = m I [ -o  sin tp + 0x/I - (u - cto) cos ~]to sin q~ (3.4) 

The unknown quantities in (3.3) are to, u and q). The Y/are known functions of the angles of side 
slip 5i, described in [2]. At u = a~+ the linearization matrix of system (3.1) in the neighbourhood of 
rectilinear motion of the system has one zero eigenvalue, while the other three eigenvalues have negative 
real parts. 

Let us expand the left-hand sides of Eqs (3.3) in Taylor series in the neighbourhood of the point 
to = 0, ~ = 0, q) = 0. The linear approximations of the first two equations of system (3.3) with 
respect to to and u are linearly dependent at the critical value ~. of u (the variable ~0 occurs in them 
non-linearly). Expressing ~0 via the third equation as a series in powers of to, u and substituting into the 
first two equations, we obtain a system of two equations for steady motion of the initial system, accurate 
to within a given accuracy. The calculations will be carried out, dropping terms of order higher than 
three. 

Since 

53 = + [to(c + ,,]o-' +. . .  

it follows from the third equation of  (3.3) that 

q) =-UO -I +[(c +dl)v -I -mlok3l]to+... 

For steady motion of the two-unit system 

u = ( b  - m a o 2 k ~ J l  -I ) t o + . . .  

Therefore 

(3.5) 

It follows from (3.4) that 

Y'= m~o2k~ ' {-uv- '  +[(c + d, )u-'-m,ok~' l o}  (o2 +... (3.6) 

This expression enables us to treat the first two equations of system (3.3) as independent, i.e. to reduce 
the three-dimensional problem of steady states to a two-dimensional problem. Changing from the 
variables co and u to the variables 51 and 52 using formulae (1.1) of [2] and putting 

ct=mlo4(mx3g213)-I[v2(x3- x2)(×2×3g) -1 + c + d  I - b ) ]  

Yi = kiSi - ki~. .F . . . .  k; m kt~ (2G?q)2 ) -I 

~i  = k i G i  "1' x~-w-.k; G/'1, G I - -mgb 0 

G 2=mgao, G3=mlg, ao=al-I 

b o =bl -I, }1"= y'(rng) -] 

we can write these equations as 



Here 
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- o g - l t o  +,c b08m +,  ao82 - x b08  - ×[a08  + Y:+ . . . .  0 

- + - - '  r . '+ . . . .  0 

Y.'=CxI3o-3co3+ .. . .  c 0 = o 1 - ' [ 0 - 8 |  + ~ ( 0 -  51)3 + 82 + Z~i3+...] 
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(3.7) 

4. THE. S T A B I L I T Y  OF R E C T I L I N E A R  M O T I O N  (0 = 0) OF T H E  
T W O - U N I T  S Y S T E M  AT C R I T I C A L  V E L O C I T I E S  

The critical velocity is defined by formula (1.15) in [2], which may be transformed as follows: 

2 0+ = Xlx2g/(xl - x 2 ) - t  ~l  = kl / Gt 

x 2 = k 2 1 G 2, G t = mgbl  -] - mtgb I (c - b ) l - I ~  -I 

G 2 = regal -I + mlgb  I (a + c) l - lLT I 

where ki are the cx~mering stiffnesses. In this case bx = 0. Since 

x l b g  + 0 2 t t t t  

~[I = ~ 2 a g - o  2 '  do < 0  

[ x.& 
'Yi u=v+ = "/2 = x2 

it follows that at ~ = a~+we have ('tl - ~/2)* > 0. The condition F~'o" - F~'o" < 0 is satisfied if and only if 

* . 4 2 -i -'~ d l > d t ,  d ~ = b - c + m ~ 3 0 + ( 2 m t x t × 2 g  l) (~1~2"- (4.1) 

-,2Cl)/2 )[I + C(Xlb + x2a)( xl - x 2 )-I (ab)-| ]-1 - 0+(2 x 3 - x2)(x2x3g)-I + 

+mx,o 2+ (x~+ x , x 2 +  x~){3m,gx:x~[! + c(xtb + × 2 a ) ( x , -  x2 )-' a- '  b- '  1}-' 

The last term in (4.1) is generated by the cubic terms in co and is substantially less than the preceding 
terms; hence any quantitative corrections that it induces may be ignored. By previous reasoning 
(Section 2), there is a generation bifurcation at the origin of the phase space, while the boundary ~ = 
x)+ of the stability domain in the parameter space of the two-unit system is safe (in the sense of [10]). 
When d l <  d~ one', has a merging bifurcation, and the hyperplane ~ = ~+ is unsafe. 

5. B I F U R C A T I O N  SETS OF S T E A D Y  STATES OF 
T H E  T W O - U N I T  S Y S T E M  (0 ~ 0) 

Putting YT/= YATi -1 and using (3.6), we write the first two equations of (3.3) in the form 

- u  2 (gl )  -l (0  - 81 + 8 2 ) + boYl* + aoY 2 + or(0 - 8~ + ~i 2 )3 + . . . .  0 

Yl* - Y2" - caolb-t°t( 0 - 81 + ~2 )3 + . . . .  0 

Define a new variable by 

¥ = v 2 c l ( b g ) - 1 8 j  + C2Yl*(Sl)=v2cl(bg)-1(O+~)2)+c3Y2*(~2) 

(c I = c a  "l , c 2 = l + c  t, c 3 = l - c b  - t )  

(5.1) 
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Expressing 81 and 52 in terms of  Y and retaining terms of  order  up to three, we obtain a cubic equation 
in Y. Equat ing the discriminant o f  the equat ion to zero we find the bifurcation set of  the two-parameter  
(0, ~)-family of  steady states 

02 ---- "~¢W 3 + O ( W 3 ) ,  W = 0 2 0 0 2  --1 (5.2) 

4/ ~2[ I ~uza. - Ib- l~-20t -sa- I  T----)27t-3~ --'-I +1-'38 } I F' 

( )-' ' 133= o2qb-lg-1+×2c 3 , O q = u + q o  g + 

+XlX2C2C 3, ~ = (~l - x2 )a 4b4~ll×21[~lb(a + c ) -  ×2a(b-c) ] -4  { I/2(~lq~22 - x2tp12 ) -  

H e r e  ~0 is the critical value of  the velocity of  angular mot ion of  the two-unit system for  the given values 
o f  0. The  sign of  T depends  on the value old1:  if dl  X d~, then T <> 0. Figure 2 shows the curve (5.2) in 
the ne ighbourhood o f  the point  (0, a)+): the solid curve for  d l <  d~ and the dashed curve for  d l >  d~. 
As dl  increases and passes through d~ the cusp is reorganized into its dual (transition to a safe par t  o f  
the boundary  o f  the stability domain) .  The bifurcation set represented by the solid curve has been  
described previously [6, 11]. 

6. C O M P U T E R  S I M U L A T I O N  

For the numerical determination of the set of parameters of the two-unit system at which the number of singular 
points changes, we supplement the three equations of the steady states by a fourth, obtained by equating the Jacobian 
of the system to zero. The unknowns are to, u, 9, 0 and a). The manifold of steady states is found by the method 
of continuation [12] as a function of the two parameters 0 and u, having taken to = 0, u = 0, q~ = 0, 0 = 0, u = 
u+ as the starting point. We take m = 5310 kg, ml = 6481 kg, a = 1.92 m, b = 0.82 m, c = b, d l =  14 m, kl = 
305,091 N, k2 = 103,496 N, k3 = 154,079 N, and tpl = tp2 = 0.8. Then ~+ = 9.436 m/s and d~ = 9.509 m. The curve 
in the upper part of Fig. 3 is the section of the bifurcation surface by a plane d2 = const, where dl = 9.3 m. On 
the left we show a fragment of the bifurcation set in a small neighbourhood of the point 0 = 0, u = u+, confirming 
the fact that the boundary of the stability domain ~ = ~+ is unsafe at dl < d~'. On the right is the same for dl = 
9.7 m; in this case the boundary is safe (the sections of the bifurcation surface at d l =  9.3 m and dl = 9.7 m are 
practically the same on the scale chosen here). At dl = d~ a "butterfly" singularity is obtained at the point (0, u÷). 

Figure 4 (k3 = 254,079 N, d l =  13.56 m <dl ' )  shows that in a small neighbourhood of the point (0, u+) four 
other cusps exist. The symbol D(s) denotes domains with s steady states. The qualitative structure of the bifurcation 
curves is the same as that for k3 = 154,079 N and dl = 9.3 m. The difference is that in Fig. 3 the upper cusps are 
farther apart. The domain in Fig. 4 is formed by the intersection of the cusp and two symmetrically placed 
swallowtails. Because of the evolution of these swallowtails (birth and death) as the parameter dl varies, the unsafe- 
safe property of the boundary u = ~+ of the stability domain changes at d1'. 
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